Search results

Search for "atomic force microscopy" in Full Text gives 541 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • bond with the microscope probe is reflected by the strongest attraction at the vacancy center as well as by hysteresis effects in force traces recorded for tip approach to and retraction from the Pauli repulsion range of vertical distances. Keywords: atomic force microscopy and spectroscopy; graphene
  • following. Atomic force microscopy and spectroscopy findings Figure 2 compares constant-height AFM topographs of the defects (Figure 2a,c) with simultaneously recorded current maps of the same defects (Figure 2b,d). The tip–surface distance for the AFM and current maps was defined by the tip excursions
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • using atomic force microscopy, and induced damage profiles inside Si and Ge by Rutherford backscattering spectrometry and transmission electron microscopy. The ripple wavelength was found to scale with ion fluence, and energetic ions created more defects inside Si as compared to that of Ge. Although
  • clustering of defects leads to a subsequent increase of the damage peak in irradiated samples (for an ion fluence of ≈9 × 1017 ions/cm2) compared to that in unirradiated samples. Keywords: atomic force microscopy; ion beam; nanopatterns; radiation damage; Rutherford backscattering spectrometry; transmission
  • in the TEM sample preparation lab at IUAC, New Delhi. Results and Discussion Atomic force microscopy studies Energetic ions, of a few hundreds of kiloelectronvolts, from the ion implanters modify the surface of the target material to grow nanopatterns. The surfaces of the pristine and ion-treated
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • . However, atomic force microscopy revealed that they are constituted of nanoflakes (with a lateral size of typically 50 nm) with possibly a distribution of thicknesses. Furthermore, depending on the synthesis conditions, the MoS2 surface coverage can be incomplete, and the thin film average thickness can
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • -induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force. Keywords: atomic force microscopy; force sensing
  • . Acknowledgements We thank the Quantum-Limited Atomic Force Microscopy (QAFM) team for fruitful discussions: T. Glatzel, M. Zutter, E. Tholén, D. Forchheimer, I. Ignat, M. Kwon, and D. Platz. Funding The European Union Horizon 2020 Future and Emerging Technologies (FET) Grant Agreement No. 828966 — QAFM and the
  • August K. Roos Ermes Scarano Elisabet K. Arvidsson Erik Holmgren David B. Haviland Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-114 19 Stockholm, Sweden 10.3762/bjnano.15.23 Abstract We describe a transducer for low-temperature atomic force
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • Ke Xu Houwen Leng School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China 10.3762/bjnano.15.22 Abstract To comprehensively study the influence of atomic force microscopy (AFM) scanning parameters on tip wear, a tip wear assessment method based on sharp
  • scanning frequency and free amplitude, and a set point of approximately 0.2, resulting in clear, high-quality AFM images. Keywords: atomic force microscopy; estimated tip diameter; scanning parameter; tip reconstruction; tip wear; Introduction AFM is a commonly used multifunctional technology in
PDF
Album
Full Research Paper
Published 14 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • provides information about the degree of damage caused by this method. Atomic force microscopy (AFM) measurements reveal important aspects of topographical changes induced in the substrate and help to establish optimized conditions for the etching process. Results The fundamentals of water-assisted FEBIE
  • those with similar characteristics, allowing us to distinguish between irradiated and nonirradiated areas of the graphene layer and evaluate the etching results. Atomic force microscopy Precise surface analysis of etched structures can be performed by AFM. We used a unique AFM LiteScope from NenoVision
PDF
Album
Full Research Paper
Published 07 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • relations of refractive indices and extinction coefficient were investigated. The morphologies of the thin films were studied with atomic force microscopy. The chemical boundaries of the ternary layers were determined by Raman spectroscopy. Based on UPS studies, the energy diagram of the potential devices
  • observed in our study. Atomic force microscopy Surface examinations of the sample mixtures were performed. Figure 7 illustrates the surface morphology in a two-dimensional format. Three-dimensional images of the surface are in Supporting Information File 1, Figure S1. The roughness profile parameters for
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • Mustafa Kangul Navid Asmari Santiago H. Andany Marcos Penedo Georg E. Fantner Laboratory for Bio- and Nano-Instrumentation, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland 10.3762/bjnano.15.13 Abstract Dynamic atomic force microscopy (AFM) modes that operate
  • rate and therefore enables higher scan rates while refining the mechanical property mapping. Keywords: atomic force microscopy (AFM); feedback control; off-resonance tapping (ORT); pulsed-force mode; Introduction Constant force mode, a widely used AFM imaging mode, utilizes a feedback controller that
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • force microscopy; calibration; drift correction; image correlation functions; periodic structures; scanning probe microscopy; Introduction In science and technology, scanning probe microscopy (SPM) techniques are widely used to study the structure and properties of surfaces and interfaces from the
  • distorted by a very high drift velocity, only partly usable images, and images exhibiting an overall weak contrast. Moreover, we show that the semi-automatic analysis of periodic images can be applied to a long series containing hundreds of images measured at the calcite–water interface. Keywords: atomic
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • . However, this method yields an accurate estimate of the tip radius with a low root mean squared error of the curve fitting results. Keywords: AFM tip calibration; nonlinear regression curve fitting; Introduction Atomic force microscopy (AFM) with a sharp tip is typically used to characterize
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • three experiments. The FEBID structures were investigated by SEM and noncontact atomic force microscopy (AFM). Figure 3a shows the SEM images of the deposits along with the respective deposition parameters. Magnified sections from these SEM images are shown in Figure 3b. Auger electron spectroscopy was
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Spatial variations of conductivity of self-assembled monolayers of dodecanethiol on Au/mica and Au/Si substrates

  • Julian Skolaut,
  • Jędrzej Tepper,
  • Federica Galli,
  • Wulf Wulfhekel and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2023, 14, 1169–1177, doi:10.3762/bjnano.14.97

Graphical Abstract
  • electronics. A common test bed for fundamental investigations on how to acquire this conductivity are alkanethiol layers on gold substrates. A widely used approach in measuring the conductivity of a molecular layer is conductive atomic force microscopy. Using this method, we investigate the influence of a
  • /Si; conductive atomic force microscopy; dodecanethiol; self-assembled monolayers; Introduction For decades, the need for miniaturization of electronics has pushed the research field into the direction of bottom-up, rather than top-down, approaches. In this research field, molecular electronics [1][2
  • applied method uses conductive atomic force microscopy (CAFM). In this technique, a conductive probe is used in an AFM, which allows for imaging the surface topography (and other characteristics such as adhesion and stiffness) with lateral resolution while simultaneously being able to measure current
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2023

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • uncrosslinked PDMS monomers (Supporting Information File 1, Figure S3C). Atomic force microscopy (AFM) scans of the samples (Figure 1F–H) show that the nanopillars and nanoholes have sub-micrometer feature sizes and a periodicity of around 1.2 µm. Due to AFM measurement artifacts, especially for lateral
  • ) Cross-sectional profile of the flat (F), nanopillar (G), and nanohole (H) PU surface from atomic force microscopy scans, showing the dimensions of the nanostructures (G, H). (Dimensions in parentheses were obtained from SEM images in Supporting Information File 1, Figure S4.) (I) Water contact angles on
  • microgroove (C), pillar–groove (D), and hole–groove (E) substrates, with corresponding high-magnification images (insets). (F–H) Cross-sectional profile of the microgroove (F), pillar–groove (G), and hole–groove (H) PU surface from atomic force microscopy scans, showing the dimensions of the structures. (I, J
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • article, we discuss examples highlighting the influence of elasticity in nanoscale biological interactions focusing on mucosal delivery and on tumor targeting. Besides this, we discuss the influence of different measurement settings using atomic force microscopy for the determination of mechanical
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
  • determine mechanical properties of nanoparticles (or their corresponding bulk materials) highlighting quartz crystal microbalance, rheology, and atomic force microscopy (AFM) are summarized by Li et al. [18]. Another often reported method is particle deformability, being extrusion a possibility for
PDF
Album
Perspective
Published 23 Nov 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • work, we demonstrate the development of a multi-resistance reference sample for calibrating resistance measurements in conductive probe atomic force microscopy (C-AFM) covering the range from 100 Ω to 100 GΩ. We present a comprehensive protocol for in situ calibration of the whole measurement circuit
  • : calibration; conductive probe atomic force microscopy; measurement protocol; nanoscale; resistance reference; Introduction Since its introduction thirty years ago by Murrell et al. [1], conductive probe atomic force microscopy (C-AFM) has evolved into a unique and powerful technique for measuring local
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • mechanical oscillation of the piezoelectric membrane with vertical atomic resolution in real-time. This technique offers the opportunity to measure concurrently the optoelectronic and mechanical response of the device at the nanoscale. Furthermore, time-dependent atomic force microscopy (AFM) was employed to
  • ]. However, the working principle of these techniques is based on optical interferometry mapping which can be challenging for light-sensitive devices. Furthermore, it can be advantageous to employ a method that also allows for mechanical contact and manipulation. Atomic force microscopy (AFM) [11][12][13][14
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • Kevlar® K29 fibers, we find remarkable differences between the internal structures of the two fibers, and posit connections between our measurements and multifunctional performance studies from the literature. Keywords: atomic force microscopy; correlative characterization; high-performance fibers
  • , overcutting leads to transverse failures near the notches without producing an internal shear plane. Multifrequency atomic force microscopy scanning The exposed internal surfaces of FIB-notched fibers were scanned using a Cypher AFM with an ARC2 controller (Asylum Research). Olympus AC200TS cantilevers (k ≈ 9
PDF
Album
Full Research Paper
Published 05 Oct 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • CoAl-based LDH synthesis through an ARR method had been demonstrated, morphological aspects were addressed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) (Figure 4 and Figure 5). For reference x1, well-defined hexagonal single
  • microscope at an accelerating voltage of 20 kV. Atomic force microscopy (AFM) AFM was carried out with a Bruker Dimension Icon microscope in scan-assist-mode. A Bruker Scanasyst-Air silicon tip with a diameter of around 10 nm was used to obtain images with a resolution of 512 × 512 or 1024 × 1024 pixels. The
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • electron microscopy (SEM, Hitachi S4800) and atomic force microscopy (AFM, Asylum Research MFP-3D). Electrochemical impedance measurements were performed under various atmospheric conditions in a custom-made system described elsewhere [28]. The main system parameters were RH from 4% to 97%, gas flow from
  • . Atomic force microscopy: (g) a bundle of CuO nanowires between microelectrodes and (h) a height profile scan across the bundle. Impedance spectra measured for the system of CuO nanowire networks on microelectrodes at fixed T (30 °C) and various RH (5%, 20%, 50%, 73%, and 95%). Dotted lines connect
PDF
Album
Full Research Paper
Published 05 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • -resolution CLSM imaging or atomic force microscopy. As it was visualized by CLSM [55][56][57], the basal parts of some short and long setae appear to be relatively soft and seem to contain resilin or other proteins. This should influence the mobility of the rotating setae. To account for this in the
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • substrates fabricated using both methods, we attempted to prepare substrates with a comparable amount of deposited Ag, which was examined and controlled using atomic force microscopy (AFM). For this purpose, additional Ag layers were deposited on flat Si substrates. Based on the measured thickness of the Ag
PDF
Album
Full Research Paper
Published 03 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • length of 5 μm were produced at CTNano/UFMG [59][60][61]. Morphological analysis was carried out by scanning electron microscopy (SEM) in a Quanta 200 FEG, using secondary electrons between 2 and 10 kV. Atomic force microscopy (AFM) was carried out on a Bruker MultiMode8 SPM using the intermittent
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • widely used characterization tool for GR2Ms [8]. A search of Web of Science showed that of 97,532 articles published in the last five years with “Graphene” in the abstract, 9.3% also mentioned “Raman”. This is compared with atomic force microscopy (AFM) (2.4%), scanning electron microscopy (SEM) (11.4
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • known as a method that can measure the contact potential difference (CPD) between a tip and a sample with high spatial resolution [4][5]. KPFM is based on the detection of the electrostatic force between a tip and a sample using atomic force microscopy (AFM) [6][7][8]. CPD and topographic measurements
PDF
Album
Full Research Paper
Published 31 Jan 2023
Other Beilstein-Institut Open Science Activities